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ABSTRACT 

An analytic solution to a partial differential equation model for gradient elution chromatography is obtained. The model is restricted 
to linear isotherms and treats mass transfer effects with the linear driving force approximation. The solution is obtained for periodic, 

rectangular feed pulses, with an arbitrary gradient shape and type, and is given in the form of a convergent series that allows a direct 
calculation of the effluent profile and of the average product concentration. Calculations for small feed pulses, show that the solution 
gives the retention time and peak spreading predicted by the linear solvent strength theory for reversed phase chromatography, in the 
limit of Gaussian peaks. For larger feed pulses the solution predicts asymmetric peaks with concentrations exceeding that of the feed 
sample. The theory developed is succesfully used to predict volume overload effects in gradient elution from isocratic elution data for an 

experimental system. 

INTRODUCTION 

Gradient elution chromatography is frequently 
used for both analytical and preparative applica- 
tions, especially for the separation of mixtures 
whose components have a broad spectrum of reten- 
tivity [ 1,2] and for biopolymer separations [3]. While 
in analytical applications small feed pulses are used, 
in preparative applications the feed pulses are larger 
and may be have the shape of a rectangular slug. 
Often preparative gradient elution is carried out in 
industry with only slight concentration overloading 
during feed injection, but with considerable volume 
overloading, since such conditions tend to be the 
most reproducible to operate. There is a need, 
therefore, for simple solutions to the equations that 
describe linear gradient elution that can be used by 
the industrial practitioner for the purpose of inter- 
pretation of results and parameter optimization. 

Correspondence to: Dr. G. Carta, Center for Bioprocess Develop- 
ment, Department of Chemical Engineering, University of Vir- 
ginia, Charlottesville, VA 22903-2442, USA. 

Gradient elution chromatography has been stud- 
ied theoretically by many authors with the assump- 
tion of linear adsorption equilibrium [3-121. These 
analyses are restricted to solutions that are suffi- 
ciently dilute that adsorption is governed by Henry’s 
law, or when a high initial solvent strength is used to 
maximize resolution [ 131. Non-linear adsorption, on 
the other hand, must be considered for concentra- 
tion overloading conditions, but this generally re- 
quires numerical simulation methods, such as Craig 
simulations [ 14,151, or orthogonal collocation [ 1,2, 
161. However, in gradient elution chromatography, 
the equilibrium distribution coefficient of each sol- 
ute decreases rapidly as the solvent strength is 
increased. As a consequence, in many cases non- 
linear adsorption affects only the initial feed loading 
step and the initial phase of gradient elution. The 
linear approximation can then still provide an 
adequate representation of non-equilibrium spread- 
ing effects, if the equilibrium remains linear for most 
of the separation time [12,13]. 

The most comprehensive treatment of gradient 
elution chromatography appears to be the linear 
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solvent strength (LSS) theory of Snyder and co- 
workers (see refs. 3 and 7). The theory is developed 
for infinitesimal feed pulses with a linear gradient of 
the modifier concentration, cp 

cp = ‘PO + fit (1) 

and for solutes for which the dependence of the 
linear adsorption coefficient K on cp has the form 

In K = In K - Sq (2) 

Here K and S are characteristic constants for 
each solute. Assuming that the modifier propagates 
through the bed as an ideal, undistorted wave, the 
retention time of a component is given by 

tR = f + -+ In 1 + $ K,(l - E) 
[ 1 (3) 

K. is the distribution coefficient for the component 
at the start of the gradient, when cp = q”. The 
standard deviation of the component peak in time 
units is 

ziu a=cz8+ [ 
Ko(l - 4 

K,(l - &)A!$Z/U + 1 1 (4) 

where N is the plate number measured under 
isocratic conditions for a peak that elutes with 
retention time tR and C is a band compression factor 
given by 

c = (1 +P +p2/3P2 

l+P 
(5) 

with 

&K,(l - &)S/IZ/U 

p = & + K,(l - E) (6) 

Frey [12] has recently generalized the treatment, 
providing asymptotic relations for preparative gra- 
dient elution chromatography, which converge to 
the results of the LSS theory for infinitesimally small 
feed pulses. 

The objective of this paper is to provide an 
analytic solution in the form of explicit expressions, 
which are valid for both small and large (rectangu- 
lar) feed pulses and which are applicable to any 
arbitrary gradient shape and type. The solution is 
restricted to linear isotherms and neglects the accu- 
mulation of solute in the mobile phase in the 

column. Thus, the solution is applicable only to 
systems in which the solutes are retained signiticant- 
!y by the stationary phase, but with a linear relation- 
ship between the concentration in the stationary 
phase and that in the mobile phase. However, the 
solution is general with respect to sample size, to the 
way in which the modifier concentration is varied, 
and to the functional relationship between the 
distribution coefficient and the modifier concentra- 
tion. Thus, the solution applies to both narrow and 
wide feed pulses and to different branches of chro- 
matography, such as reversed-phase and ion-ex- 
change, since it can take into account the different 
characteristic dependencies of the distribution coef- 
ficient (or retention factor) on the modifier concen- 
tration. 

MATHEMATICAL MODEL 

We consider a fixed-bed which is supplied with a 
periodic, square wave feed of rectangular pulses, 
each of duration tF, as shown in Fig. 1. For each 
period of duration tp, after introduction of the feed 
slug, the solvent composition is changed in a pre- 
scribed way, either continuously or in a stepwise 
fashion. At the end of the period, the solvent 
composition is returned to the original value and a 
new feed slug is introduced. The corresponding 
variation of K for a solute is sketched in Fig. 1. The 
gradient ends at time tF + tG, after which Kis held 
constant at a value Ko. 

Neglecting axial dispersion and using a film model 
to describe mass transfer between the mobile phase 

Fig. 1. Input for gradient elution chromatography. The gradient 
line shows the effect of the modifier concentration on K. 
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and the stationary phase, the conservation equa- 
tions for a solute in the bed may be written as 

aq eg+(l-r-:)at+ug=O 
aq (1 - &)- = k&r 4 
at ( ) c - - 

K 

(7) 

with boundary conditions 

c(O,t) = CF, 0’ - l)tp < t < 0’ - l)tp + tF 

c(O,t) = 0, 0’ - 1)tp + tF < t < jt, (9) 

j = 1, 2, 3 . . . 

Here we seek only the purely time-periodic solu- 
tion, which is approached after a sufficiently large 
number of cycles. In this case, initial conditions are 
unimportant. 

In the remainder of the development we neglect 
the mobile phase accumulation of solute; i.e., we 
neglect the first term in eqn. 7. This is permissible 
when, throughout the gradient run, the retention 
factor k’ satisfies the relationship 

k’ = KU-4 > 1 

& 
(10) 

We also assume that the modifier is not retained 
by the stationary phase. For these conditions, when 
eqn. 10 is valid, only the temporal variation of K 
needs to be accounted for. A similar assumption has 
been made by Gibbs and Lightfoot [lo] in their 
treatment of gradient elution, and yields that every- 
where in the bed 

K = K(q) = K(t) (11) 

We define the following dimensionless variables 

x = K(t) c -.- 
Ko CF 

(12) 

y=4 
KOCF 

(13) 

koaz 
n=-- 

u (14) 

d9 koa 
-CT 
dt (1 - E)K’ 

9=0 for t=O (15) 

X and Y are dimensionless mobile and stationary 
phase concentrations, n is the number of transfer 

units in the bed, and 9 a dimensionless time. Since in 
gradient elution K decreases with time, the dimen- 
sionless time 9 runs slowly at the beginning of the 
gradient run and faster towards the end. Eqns. 7-9 in 
dimensionless form are 

ax -= 
an --x+ Y 

ay 
gyx-Y 

(16) 

(17) 

X(0,9) = 1, 2?n(j - 1) d 9 < 27136’ - 1) + ?rrF 

X(0,9) = 0, 2zr(j - 1) + ro$ < 9 < 2zrj (18) 

j= 1,2,3... 

The quantities 

27cr = f 
koa 

o (1 - E)K(t) dt 
(19) 

fF 
nrF = s 

koa 
o (1 - E)K(t) dt = 

koatF 

(1 - 4Ko 
(20) 

are the dimensionless durations of the total period 
and of each feed slug. 

A time-periodic solution of eqns. 16-18 with 
period 2nr is easily found by applying the residue 
theorem to the general inversion integral of the 
Laplace transform solution of these equations [17]. 
We obtain eqn. 21. The solution consists of a series 
of terms with a sinusoidal component that deter- 
mines the location of the peak, and an exponential 
decay that determines the spreading of the peak 
caused by mass transfer resistance. The convergence 
of this series has been discussed [ 17,181. Four of five 
terms may be sufficient when mass transfer resis- 
tance is significant, but many more, perhaps 100 or 
more, if mass transfer is very effective. Note that this 
equation is totally general with respect to gradient 
shape and time and applies to both continuous and 
stepwise gradients. What varies is the definition of 
the dimensionless time, 9, that depends upon the 
integral of l/K(t) per eqn. 15. 

The time-average effluent concentration c be- 
tween two times tl and tz is of interest in preparative 
applications to determine the purity of a product 
cut. This can be found directly from eqn. 21 as 
eqn. 22. Because of the l/k2 term, this series is much 
more rapidly convergent than eqn. 21. 



154 G. Carta and W. B. StringfTeld / J. Chromatogr. 605 (1992) 151-159 

C = & :r’ c(z,t)& = c,K,(1 92 x ,, koa(t2 _ tl) ,5 ( ,9)d9 = cFKo(l - ‘1 
I 1 ko& - t1> 

““;, ‘l1 + 

These equations can be generalized to account for 
axial dispersion, external film mass transfer resis- 
tance, and intraparticle pore diffusion, by using the 
linear driving force approximation [19,20]. In this 
case eqns. 21 and 22 can be used as a good 
approximation if the mass transfer parameter koa is 
calculated from 

I EDL 1 d2 -_-++ 
koa u2 1 --E 

dp+P 
6kf 6o~,D, (23) 

where DL is the axial dispersion coefficient, d,, the 
particle diameter, kf the external film mass transfer 
coefficient, and D, the pore diffusivity of the solute. 
The relationship between the number of transfer 
units, 12, and the plate number, N, or the height 
equivalent to a theoretical plate, H, is also well 
known [21,22] 

N=Zz! 
H 2 

Thus, koa can be calculated directly from H 
obtained in isocratic experiments. 

Use of eqns. 2 1 and 22 requires a knowledge of the 
temporal variation of K in the bed. For linear 
gradients we have 

q = q” + b(t - tF) for tF < t < tF + tG 

q = vG for tF + tG < t < tp 
(25) 

We consider here three examples of application 
of linear gradients: reversed-phase liquid chroma- 
tography (RPLC), ion-exchange chromatography 
(IEC), and stepwise elution (SE). In the first case the 

relationship between K and cp is given by eqn. 2. In 
the second case we assume 

K = Av-~ (26) 

which has been shown to be valid for biopolymers 
[23] as well as small ions [ 161. Finally, for stepwise 
elution we assume an abrupt change of K from an 
initial value K. to a final value KG, independent of 
the particular type of chromatography. The expres- 
sions for the transformed time 9 and the peak profile 
c corresponding to these three cases are given in 
Table I. In each case, X is calculated from eqn. 21. 
Different gradient shapes and other relationships 
between K and 40 can be readily handled via eqn. 15. 

Calculation examples and discussion 
The parameter values shown in Table II were used 

for calculations using eqns. 21 and 22, and with the 
appropriate definitions of 9 given in Table I. The 
parameters were chosen arbitrarily to test the theory 
over a range of conditions. The parameter values, 
however, are similar to those obtained for an 
experimental system discussed below, and are repre- 
sentative of typical high-performance liquid chro- 
matographic preparative separations. To insure 
accuracy, 100 terms were used in the series and a 
spreadsheet was used to carry out the computations. 

Fig. 2 shows calculated peaks for gradient elution 
RPLC with small feed pulses and different gradient 
steepness (cc l/t&. For these conditions the total 
period, tp, chosen is sufficiently long that there is no 
interference from peaks generated by each injection 
on the next. The peaks become sharper as the 
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TABLE I 

TRANSFORMED TIME FOR GRADIENT ELUTION 

rcrr and rrro are the values of 9 at t = tF and f = fF + to, respectively. 

155 

Linear gradients: q = ‘p” + /It 

Time RPLC IEC 

Stepwise elution 

koa 
0 < t < fF 9=-t 

(1 - &)Ko 

c = c&Y 

koa[eSB(f--fd _ 11 

1F i 1 < tF + tG 9 = Y7l.F + - 

(1 - 4KoSB 
c = cFxesBw’F) 

koa(t - tG - tF) 
tF + tG < t $ tp 9 = 7TYG + - 

(I - c)‘KG 

c = cFXKO/KG 

b 
9=-t 

kou 
9=-t 

(1 - MO (1 - E)KO 

c = c,x c = c,x 

9 = nr + ko4P + b’(f - MC1 - (‘P’)~+~J k,a 
F 9=-t 

(1 - a)@ + l)AII (I - al& 

c = crXK,[(pO + B(t - tr)]b/A c = crx 

9 = 7-u.G + 
koa(t - tG - tF) 

(1 - E)KG 
9 = XIG + 

koa(t - tG - tF) 

(1 - &)KG 

c = c,XK,/K, c = cFXKo/KG 

TABLE II 

SIMULATED OPERATING CONDITIONS 

Parameter Value Units 

z 10 cm 

Lo, 
0.1 cm s-i 
5 SC1 

Ko 10 _ 
KG 2 _ 
E 0.33 _ 

lP 2000 S 

0.5 

0.4 

0.3 

B 

0.2 

L 

0.1 

0 100 ml 

t,=ms 

Am 
loo0 -Alkxd 

300400500600700 
TIME(s) 

Fig. 2. Gradient elution chromatography peaks for RPLC 
obtained with eon. 21 for different values of the gradient time to. 
Parameter values from Table II with rF = 10 s. CF = feed 
concentration. 

1 

gradient steepness is increased. Note that for tG = 
250 s, a significant portion of the peak exists from 
the bed after K has reached its final constant value 
KG. The first moment and the standard deviation of 
the computed peaks are given in Fig. 3, in compari- 
son with the results of the LSS theory, eqns. 3 (p z 
tR) and 4. The dotted lines show the results of the 
LSS theory if the same approximation that the 
mobile phase accumulation is negligible is made in 
eqns. 3 and 4; i.e., taking &Z/U c 0. The error 
resulting from this approximation is small for the 
conditions simulated, and it would be much less for 

50 

40 

30 
0 

E 

2-Q 

10 

V 

Fig. 3. Comparison of first moment and standard deviation for 
peaks in Fig. 2 with results of LSS theory. 
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TIME(s) TIME(s) 

Fig. 4. Effect of feed slug size on gradient elution peaks for RPLC 
calculated from eqn. 21. Parameter values from Table II with 
tG = 1000 s. CF = feed concentration. 

cases where K remains higher during the gradient 
run. The absolute deviation of the predicted peak 
position is equal to the quantity &Z/U and can be 
easily estimated. The agreement between the series 
solution and the LSS theory is excellent for these 
small feed pulses. 

The effects of volume overloading are shown in 
Fig. 4 which gives the calculated peaks obtained by 
varying the feed injection time tF. The peaks are 
Gaussian for small tr values, but they become 
increasingly asymmetrical as the loading is increas- 
ed, reaching concentrations above the feed concen- 
tration. This occurs when solute accumulated in the 
stationary phase is desorbed as a result of the change 
in Kinduced by the gradient. Then, if the number of 
plates is sufficiently large, the component is concen- 
trated into a band which may be narrower than the 
feed slug. It should be noted that the retention time 
of the peak also increases with volume loading, as a 
result of the delay in the gradient introduced by the 
finite size of the feed slug. The time-average effluent 
concentration between any two times tl and t2 may 
be calculated directly from eqn. 22 for any of these 
peaks. Thus, the concentration and product recov- 
ery in any chosen fraction is easily obtained from the 
theoretical treatment. For example, with reference 
to the peak obtained with a feed injection time of 
200 s (Fig. 4) eqn. 22 yields directly an average 
concentration c/cr = 1.61 for a fraction between 550 
and 650 s, corresponding to a recovery of 80.5% of 
the injected feed. This may be compared with an 

Fig. 5. Gradient shape and chromatographic peaks calculated 
from eqn. 21 for RPLC (- - -) and IEC (-- ). Parameter 

values from Table II with tF = 10 s, tc = 1000 s, and A = 10, b = 
2, ‘p” = 1 for IEC. CF = feed concentration. 

average concentration c//cF = 0.741 obtained from 
eqn. 22 for a fraction between 450 and 720 s, 
corresponding to essentially 100% recovery. 

Fig. 5 shows calculated peaks for gradient elution 
IEC for a narrow feed pulse with the operating 
conditions of Table II. Thus, the initial and final K 
values are the same as in the previous calculations 
for RPLC. The variation of K with time is, however, 
different. For these calculations we have chosen A 
= 10, b = 2 and 9’ = 1, in consistent units. As 
shown in Fig. 5, for these parameter values, the 
effect of 9 on K is more dramatic for IEC than for 
RPLC. Thus, the IEC peak is eluted faster and is 
sharper than the RPLC peak. Considerations on 
peak asymmetry and height similar to those made 
for RPLC can of course also be made for IEC, and 
are entirely predicted by the analytic solution. 

Calculated peaks for stepwise gradient elution 
with the conditions of Table II are shown in Fig. 6, 
for small feed pulses. In the isocratic case, the peak is 
symmetrical and broad, since elution takes place 
with the initially large K value. For tG = 625 s, 
however, we see that a portion of the peak elutes for 
isocratic conditions as the initial K value. When the 
step change in K occurs, the portion of the peak still 
within the column is sharpened and exits the bed as 
a narrow, more concentrated band. The abrupt 
transition in Fig. 6 is the result of having neglected 
the mobile phase accumulation term in eqn. 7. A 
smoother transition would, of course, be observed in 
practice. When tG is reduced to values lower than 
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0.4. t,=625s 
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02 
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'i.,_ 

TIME, 
20 &I 1cnO 

Fig. 6. Peaks calculated from eqn. 21 for stepwise elution 

chromatography. Parameters from Table II with tr = 10 s. CF = 
feed concentration. 

500 s, the solute band is well within the bed when the 
step change occurs. Since K is initially large, the 
solute band makes little headway through the bed, 
before the step change. As a result the peak shape 
and spreading is nearly independent of tG. 

EXPERIMENTAL 

Equipment and materials 
A Waters (Milford, MA, USA) liquid chromato- 

graph with a Rheodyne Model 7010 injection valve 
was used. The injection valve was fitted with differ- 
ent loops with volumes of 0.02,0.8,2.2 and 4.1 cm3, 
which were constructed of 0.039 in. I.D. stainless- 
steel tubing. The equipment dwell volume and gradi- 
ent linearity were determined from blank methanol- 
water gradient runs, using 1% acetone in the 
methanol as a tracer. Measurements with flow-rates 
of l-2.5 cm3/min gave a value of the dwell volume of 
2.1 + 0.1 cm3. Gradients with a maximum deviation 
from linearity of less than 2% were obtained with 
and without the column. The column packing was a 
bonded-phase octadecyl silica 55-105 pm irregular 
particles (Megabond; Waters), packed in a 25 x 
0.46 cm I.D. stainless-steel column obtained from 
Biotage. This material is often used in large-scale 
preparative high-performance liquid chromatogra- 
phy equipment [24]. The void fraction of the packed 
column was estimated to be E = 0.33 f 0.06 from 
pressure drop measurements. The experiments were 
carried out at room temperature (23 +_ 2°C) with 
UV detection at 254 nm. 

Ethyl paraben (Sigma) was used as a test 

compound. Samples of ethyl paraben containing 
0.008 g/l were prepared with various methanol- 
water mixtures to match the composition of the 
initial eluent used in gradient elution experiments. 
The linear adsorption coefficient of ethyl paraben, 
K, and H were determined from experimental peaks 
obtained isocratically for various eluent composi- 
tions, using the 0.02-cm3 loop. K and H were 
calculated numerically from the first and second 
moments of the digitized experimental peaks. The 
results are shown in Fig. 7. The linear adsorption 
coefficient depends on the methanol volume frac- 
tion, cp, in the manner predicted by eqn. 2, with only 
a minor deviation at the highest cp value. The values 
of In K and S obtained from a regression of the data 
are 5.87 and 8.61, respectively. The linearity of the 
equilibrium was checked over the range of cp values 
from 0.3 to 0.7, by varying the amount of ethyl 
paraben injected with the various sample loops. 

H was also found to vary with the methanol 
volume fraction in the eluent. This can be attributed 
to changes in viscosity and solute diffusivity that 
occur when the solvent composition is changed. The 
variation was, however, very small and limited to 
about + 7% of a mean value of 0.145 cm in the range 
of cp from 0.3 to 0.6. The corresponding value of 
the mass transfer parameter koa is obtained from 
eqns. 14 and 24, yielding a value of koa = 3.5 s-l. 

RESULTS AND COMPARISON WITH THEORY 

Gradient elution experiments were carried out 
with the larger sample loops, in order to test the 

100 0.25 

..i_:‘ii = 0.2 0.4 0.5 0.6 0.7 0.9 0.9 
METHANOL VOLUME FRACTION 

Fig. 7. Linear adsorption coefficient, K(A) and H (B) for ethyl 
paraben obtained from isocratic elution experiments at 2.5 cm3/ 
min with different eluent compositions. K = exp (5.87 - 8.61 cp). 
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TIME(s) 

Fig. 8. Comparison of experimental (- -) and predicted (. . .) 
gradient elution profiles for ethyl paraben. Gradient from 30 to 
60% (v/v) methanol in water, in 15 min at 2.5 cm3/min. V, is the 
volume of the injected sample and CF the feed sample concentra- 
tion (= 0.008 g/l). 

ability of the theory to simulate gradient elution 
behavior from isocratic elution data, and to correct- 
ly predict volume overloading effects. A gradient of 
30 to 60% methanol in 15 min was used at a flow- 
rate of 2.5 cm3/min. After the start of the gradient, 
injection of the samples was delayed by an amount 
of time equal to the equipment dwell time, so that, 
the gradient started immediately after introduction 
of the feed slug. The results are shown in Fig. 8 in 
comparison with the peaks predicted by the theory. 
Since the fluid phase accumulation term has been 
neglected in the model, the theory would underesti- 
mate the elution time of the peak (see Fig. 3). Thus, 
in order to provide a clearer comparison of predicted 
and experimental peak shapes, the calculated peaks 
were shifted to the right by the quantity &z/u = 
32.9 s. This correction is less then 5% of the mean 
retention time. Aside from this correction, the 
theory requires no adjustable parameter; i.e., the 
values of K and H obtained from isocratic experi- 
ments are used to predict the gradient elution 
behavior. The volume overloading effects are well 
predicted by the theory. As the volume injected is 
increased, the peak becomes increasingly asymmet- 
rical and reaches maximum concentrations that 
exceed the feed value. Only a small discrepancy 
between experimental and predicted peaks is ob- 
served. This may be due to the inability of the theory 

to provide an exact description of dispersion in 
gradient elution with the single lumped mass trans- 
fer parameter koa. 

CONCLUSIONS 

The analytic solution presented here is totally 
general with respect to gradient shape and type; i.e., 
it applies to linear and non-linear gradients, to 
multiple step gradients, and to different relation- 
ships between K and the modifier concentration. 
The equations are limited to linear isotherms and to 
gradient conditions in which the linear adsorption 
coefficient remains large during the gradient run. 
The solution is explicit and allows a direct calcula- 
tion of the effluent concentrations. The first moment 
and standard deviation of calculated peaks converge 
to the predictions of the LSS theory in the limit of 
small feed pulses and Gaussian peaks. Yet, the 
solution presented here is uniformly valid for small 
pulses and large, rectangular feed slugs. The series 
solution is also easy to use, although a program- 
mable calculator or a personal computer may be 
needed to compute a sufficiently large number of 
terms to insure adequate precision. A significant 
advantage is that the solution can be formally 
integrated, so that the average concentration of any 
chosen product cut, may be calculated directly. This 
is convenient to select the product cuts that will 
provide a desired purity in preparative applications. 

The theory was found to be able to correctly 
predict volume overload effects in gradient elution 
which were observed experimentally for a model 
system. The prediction was based solely on data 
obtained isocratically for k’ and H. The close 
agreement between the theory and the experimental 
results would indicate that a single mass transfer 
parameter may be used to represent dispersion in 
gradient elution with reasonable accuracy. 

Finally, it should be noted that the solution 
provides the time-periodic response obtained with 
periodic feed pulses. On the other hand, if the 
response to a single isolated pulse is desired, this is 
easily accomplished by selecting a sufficiently large 
total period to avoid interference from repeated 
injections, as we have done with the sample calcula- 
tions reported here. 
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SYMBOLS 

A 
b 

C 

c 

CF 

c 

4 

DL 

4 

H 
k 

k 

koa 

kf 
K 

Ko 

KG 

n 

N 

P 
4 
r 

rF 

rG 

s 

t 

tF 

tG 

tR 

tP 

U 

VF 

x 

Y 

z 

parameter in IEC, eqn. 26 
parameter in IEC, eqn. 26 
mobile phase concentration 
average value of c in a product cut 
feed concentration 
peak compression factor in LSS theory, eqn. 5 
particle diameter 
axial dispersion coefficient 
pore diffusivity 
height equivalent to a theoretical plate 
term number in series solution 
retention factor 
film mass transfer parameter 
external film mass transfer coefficient 
linear adsorption coefficient 
initial value of K 
final value of K 
number of transfer units, eqn. 14 
plate number 
parameter defined by eqn. 6 
stationary phase concentration 
dimensionless period, eqn. 19 
dimensionless duration of feed injection, 
eqn. 20 
dimensionless gradient duration 
constant in eqn. 2 
time 
duration of feed injection 
duration of gradient 
retention time 
total period 
mobile phase superficial velocity 
feed volume 
dimensionless mobile phase concentration, 
eqn. 12 
dimensionless stationary phase concentra- 
tion, eqn. 13 
column length 

Greek symbols 
fi gradient slope 
& bed void fraction 

particle porosity 
dimensionless time, eqn. 15 
constant in eqn. 2 
first moment of peak 
standard deviation of peak 
modifier concentration or volume fraction 
value of cp at the start of gradient run 
value of cp at the end of the gradient run 
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